Ensemble-based data assimilation for thermally forced circulations
نویسندگان
چکیده
منابع مشابه
Ensemble-based atmospheric data assimilation
Ensemble-based data assimilation techniques are being explored as possible alternatives to current operational analysis techniques such as threeor four-dimensional variational assimilation. Ensemble-based assimilation techniques utilise an ensemble of parallel data assimilation and forecast cycles. The background-error covariances are estimated using the forecast ensemble and are used to produc...
متن کاملEnsemble-based chemical data assimilation
Evaluating model performance of an ensemble-based chemical data assimilation system during INTEX-B field mission A. F. Arellano Jr., K. Raeder, J. L. Anderson, P. G. Hess, L. K. Emmons, D. P. Edwards, G. G. Pfister, T. L. Campos, and G. W. Sachse Atmospheric Chemistry Division, Earth and Sun Systems Laboratory, National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307-3000,...
متن کاملInformation-based data selection for ensemble data assimilation
Ensemble-based data assimilation is rapidly proving itself as a computationally efficient and skilful assimilation method for numerical weather prediction, which can provide a viable alternative to more established variational assimilation techniques. However, a fundamental shortcoming of ensemble techniques is that the resulting analysis increments can only span a limited subspace of the state...
متن کاملEnsemble-based Data Assimilation: a Review
The literature on ensemble-based data assimilation techniques has been growing rapidly in past decade. These techniques are being explored as possible alternatives to current operational analysis techniques. Ensemble-based assimilation techniques are typically comprised of an ensemble of parallel data assimilation and forecast cycles. The background-error covariances used in the data assimilati...
متن کاملAn approach to localization for ensemble-based data assimilation
Localization techniques are commonly used in ensemble-based data assimilation (e.g., the Ensemble Kalman Filter (EnKF) method) because of insufficient ensemble samples. They can effectively ameliorate the spurious long-range correlations between the background and observations. However, localization is very expensive when the problem to be solved is of high dimension (say 106 or higher) for ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research
سال: 2005
ISSN: 0148-0227
DOI: 10.1029/2004jd005718